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Coulomb Interaction Symmetries and the Mayer 
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We study the Mayer series of the two-dimensional dipole gas in the high-tenl- 
perature, low-density regime. Without perlbrming any multiscale analysis, we 
obtain bounds showing that the Mayer coefficients are finite in the thermo- 
dynamic limit. These bounds are obtained by exploiting a particular partial 
symmetry of the interaction (which we name O-.~),mmettT), already used in some 
problems related to the two-dimensional Coulomb gas. By direct bounds on 
some Mayer graphs we also conjecture that any technique based uniquely on 
the ()-symmetry will not be sufficient to prove analyticity of the series. 

KEY WORDS:  Coulomb interaction symmetries; Mayer series; two-dimen- 
sional dipole gas. 

1. I N T R O D U C T I O N  

The dipole gas and other gases of particles interacting through Coulomb 
forces are statistical systems that have been studied for a long time. In 
particular, for the dipole gas, the lack of screening is well known ~91 and the 
analyticity of the pressure in the high-temperature and low-activity region 
has been shown, in an indirect way, by mapping the system onto a field 
theory (sine-Gordon transformation) and using renormalization group 
methods (see ref. 7 for the d~>3 lattice model, and ref. 1 for the d~> 1 
continuum one). A direct proof of the analyticity of the pressure (e.g., for 
the two-dimensional case) based on bounds for the coefficients of the 
Mayer series is still an open problem. The close relationship between this 
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model and the Coulomb gas in the Kosterlitz-Thouless phase ( f l>8n) ,  
allied to the nonexistence of any proof for the analyticity of the pressure in 
the Coulomb gas (indirect arguments are presented in refs. 4, 2, and 8), 
makes this problem even more interesting. 

The Mayer series for the case of the Coulomb gas with f l>  87r was 
studied directly in ref. 5 and later in ref. 10. Both works use multiscale 
analysis and exploit one certain symmetry of the model in order to prove 
that the coefficients of the series are finite in the thermodynamic limit. 

In the present paper, in an attempt to understand the role played by 
symmetries in systems with Coulomb interactions, we study the two-dimen- 
sional dipole gas. Exploiting the same symmetry (already used in refs. 5 
and 10), we prove, without recourse to multiscale analysis, finiteness of the 
Mayer series coefficients in the thermodynamic limit. We argue, however, 
that a richer symmetry structure (i.e., the total symmetry of the dipole gas) 
may be necessary to prove directly the analyticity of the pressure. 

We introduce now the model and its properties and make more 
precise some facts stated above. Throughout this article generic constants 
are denoted by C. 

The dipole gas is a system of classical particles in a two-dimensional 
box A carrying vectorial moments q of unit length (q~ R 2, q2= 1 ), inter- 
acting via the potential 

V(G, ~2) = (qE" 0.,-,)(q2" 0x,) W(xI - x 2 )  

f ~ ) ( q , ' P ) ( q 2 " P )  " .  ,.,., .,.,, = ( 2 p2 e-P-e'P (I.1) 

where ~ = ( x ,  q), x EA c R z is the particle position, q ~ S  ~ is the dipole 
moment, and W is the Coulomb potential 

e - p "  W(x, --x2) = f  ~dP [e i " ( ' ' - ' - ' , -  1] p2 

1 f:~ cloc ..... )-'/4= [e-", 1] (1.2) 
4n t oc 

We use in (1.2) the same UV cutoff as in ref. 5. We may write (1.1) as 

V(~, G_)= V(x)-x2, 0,, G) 

1 [cos(O)-O,)  e -Ix' . . . . .  )2/4  

8u 

+ cos(0) + 02 - 2~)2) f ( x t  - x2)] (1.3) 
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where 0,. is the angle between q,. and some fixed axis, ~b~2 is the angle 
between x t - x 2  and the same axis, and 

f ( x i  - -  X 2  ) ~ e _ ( . x .  I _ x2)2/4 I - -  e - [ v l  - v 2 ) 2 / 4  

(x, -- x2)2/4 (1.4) 

Note that V(~l,~2)~O(1/lxl--x2l 2) as Ix,-x=l~oo, and also that 
V(~, ~) -- 1/(8re). 

There are several symmetries in Vgi-V(~,~i). For example, 
V(x~-xj, 0;+ to, t~i)= -V(x~- .x: j ,  0 ,  (~i), which we name the O-symmetry, 
is the one used later to prove finiteness of the Mayer series coefficients. It 
implies that the interaction averaged over dipole orientations vanishes. 
Another symmetry (say, ok-symmetry) involving ~b~j, the angular variable 
of x i - : ( j ,  makes finite the integral of the potential over a sphere: 

dxj V~/< oo; the potential, however, is not absolutely integrable (i.e., it is 
not L~); more comments are given in Section 3. Note that the second term 
in (1.3), responsible for the slow decay of V (i.e., the delicate term), 
depends on cos(0~ + 0/.-2~b~j) with a rich symmetry (involving the 0 and 
symmetries). 

Note also that V is a stable potential, which may be verified by using 
(1.1) and checking that ZY=I ZT=l V;2>~0, VN, ~l . . . . .  ~ N "  

The partition function for the dipole gas in the grand canonical ensemble 
is 

ZA(fl, 2 ) =  Z ~ .  d~, . - ,  d~Nexp --fl ~ V;j (1.5) 
N = 0  i < j  

where ~d~,=~o "d0,~,, dx, )t is the activity, and fl is the inverse tem- 
perature. The pressure is the thermodynamic limit IAI --, oo of 

flp..,(2, fl) = [A--~ log Z.,(fl, 2) (1.6) 

The Mayer series for the pressure is a formal expansion in powers of 2 
obtained b3; writing exp(-f lVii)  = [ e x p ( - f l V ~ i ) -  1] + 1, then expanding 
I-Ii<jexp(-flV~j) as a sum of terms labeled by Mayer graphs, and taking 
the logarithm (which eliminates the unconnected graphs). (61 We have 

tip.,(2, fl) = ~ Cu..,(fl) 2 u (1.7) 
N = I  

8--  87 3-4-_7 
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Fig. I. 

1; 
CN.A(fl)-N!IA I d~-i"'d~N ~ ~I [ e - / s ' ; ' - I  ] ( 1 . 8 )  

G ~ r ;  x i. j ~ G  

where aJ N is the set of all connected Mayer graphs between N points. 
A direct proof for the analyticity of the pressure as a function of 2 

in the thermodynamic limit means finding a bound ICN., ,(B)I < [C( /3 ) ]  u 
uniform in A. As Vr not L~, standard cluster expansion arguments faiP 61 
and even the proof of finiteness of the coefficients become nontrivial. 

Finiteness of the Mayer series coefficients in the two-dimensional 
Coulomb gas above 8n has been directly proved in refs. 5 and 10, as men- 
tioned. A multiscale analysis is performed there, describing the gas as a 
system of clusters of hierarchically organized charges, and a symmetry 
property is used to solve problems in the thermodynamic limit arising in 
the analysis of the interaction between neutral clusters of charges (dipoles, 
basically). Precisely, in ref. 5 a necessary gain in the decay of the interaction 
between neutral clusters is obtained by summing two neutral clusters with the 
charge distribution reversed (i.e., flipping dipoles); see Fig. 1. 

In ref. 10 the same gain is obtained by integrating over 0 (i.e., rotating 
dipoles; see Fig. 2. 

good interaction 
other cluster 

Fig. 2. 
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Notice that both procedures essentially involve the use of what we 
called the 0-symmetry of the dipole interaction. 

In the next section, we use the 0-symmetry to prove that the coef- 
ficients of the Mayer series for the pressure of the bidimensional dipole gas 
are finite in the thermodynamic limit. Section 3 is devoted to arguing that 
the full symmetry of the dipole gas may be necessary in order to prove 
analyticity of the pressure. In Section 4 we make final comments. 

2. FINITENESS OF THE MAYER SERIES COEFFICIENTS 

As mentioned before, since the dipole potential ( 1.1 ) is not L E, it is non- 
trivial to show that the Nth-order Mayer coefficient for the pressure, given 
by (1.8), is finite in the thermodynamic limit. Recall that it is expressed as 
a sum of terms labeled by connected Mayer graphs on N points, namely 

1 C.v.A(fl)=~.V ~, C~';..,(fl) (2.1) 
t ' i  e :~.v 

where 

cG 1 r -~n _~n 
s..,(fl)=~lJ, dx,...fAdx,vfo dO,...f,, dON [I [ e- ` r  

( i .])E(;  

(2.2) 

Therefore, we show now, by using only the 0-symmetry of the model, that 
we may obtain bounds for the thermodynamic limit ]A] ~ co of C~)..~(fl). 

Our results are stated as follows. 

P r o p o s i t i o n  1. Let V o.= V(xi-.x~/, Oi, 0/) be a two-dimensional 
potential, with x~-x/eR 2, 0~, O,.e [0, 2hi, and such that: 

1. IV(x,-xj, 0,, 0~)l ~< C/[1 +(x~-x~)- ' ]  

2. V(x~-xj, Oi+n, Oj)=V(xi-xi, Oi, Oj+n)= -V(x i -x j ,  Oi, O/) 

Then, for all G s ~ v ,  CAc~ ,(fl) as in (2.2) admits a bound uniform 
in A. 

To establish the proposition, besides an adequate use of the 0-sym- 
metry (property 2 above) we need the following lemma (whose proof is 
obtained following the demonstration of Lemma 2, next section). 
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L e m m a  1. Let Z be the ball of radius R centered in the origin (then 
I-rl = rcR2). Let V satisfy part 1 of the proposition above. Then, Vx, y ~ R E, 

lim {Izdx,... I dx~lV(x-x,)l 

x IV(x , -xz) l - - - IK(XN_,  --XN)I" I V(XN-- Y)I} < C~< oo 

i.e., 

IVl*.-.* IVl(x-y) 

N +  I 

[the ( N +  1 )-fold convolution] is finite in the thermodynamic limit. 

Note that the lemma alone takes care of all Mayer graphs which can- 
not be separated into two subgraphs by cutting a single line (this kind of 
graph is termed one-particle irreduciblet6~). In fact, recall that each line (i, j )  
in the graph represents a function v u = e x p ( - f l V u ) -  1 ~ f lV  u satisfying the 
hypothesis of the proposition. Thus we may apply repetitively the lemma 
in order to bound these graphs. For example, the first graph in Fig. 3 
is bounded by C lvl * Ivl * Ivl (0), whereas the second is bounded by 
noting that x7 may be integrated out, ~ dx  7 [v(x I - - x 7 ) / ) ( X v - - X 4 )  [ = Ivl * 
lvl ( x , - x 4 )  < C, and that the loop 1-2-3-4-5-6-I is bounded as in graph 1. 

Clearly there are graphs which are not controlled by Lemma 1; e.g., 
see Fig. 4. These graphs are precisely the ones which separate into two 
disconnected components by cutting just one line, i.e., the one-particle 
reducible ones. The special lines which disconnect the graph when cut are 
called tree lines. In order to control these graphs we make explicit the 
0-symmetry by introducing new variables (the charges) ai = + 1 and noting 

1 

Fig. 3. 

7 

3 

4 

5 
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Fig .  4, 

that for any function F of the potential V satisfying condition 2 of the 
proposition we may write 

I]'~ I]  '~ F[ V(x, - xj, 0,, 0i) ] dO, dOi 

= ~. F [ a f l j V ( x , - x j ,  0,, Oj)] dO, dOj 
a i ,  ~ j =  + l 

Hence, for any Mayer graph G, (2.2) becomes 

C6 A(fl) = - - 1  y, d x , . . ,  dx N dO 1 ' ' '  dO N 
N. I A I . ,  . . . . . .  ~ . = + ,  , , 

x ~ [e-/J"/'J";J - 1] 
( i , j )eG 

(2.3) 

We proceed by writing 

exp( - t i a r a  i V~) - 1 = - agaj sinh(fl V,.t) + cosh(flVo,) - 1 

graphically described as the split in Fig. 5. The name "soft" comes from the 
fact that sinh(flV u) is of order f lV  u (fl and V u small), hence its volume 
integration is delicate, and "hard" because cosh(flV0.)-I is of order 
(flVu) 2, an Li function. 

With the split above, the graph G [and so C~. ,~(fl) in (2.2)] becomes 
the sum of 2 rGI terms (IGI is the number of links in G), each of these terms 
being represented by a graph G' with the same topological structure as G 
[i.e., G' has a line between a pair (i, j )  whenever G has this line], but now 

�9 A _-- �9 ............................... �9 

i j 
exp[-[3c~, % Vo]-i 

i j 

Fig ,  5. 

-r % sinh([3 Vo) cosh(13 V,2)-I 

"soft link" "hard link" 
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the links of G' are either soft or hard as in Fig. 5. The key point is that 
these new graphs G' have associated charges: each soft link reaching the 
vertex i carries a charge a;. When we sum over the charges, it follows that 
all graphs G' with an odd number of soft links reaching any vertex i vanish 
[since ~ , ,=  +~ (aJ'  = 0  i fk  is odd].  It is not difficult to see that only those 
G' survive in which the soft lines appear in one-particle irreducible sub- 
graphs. In other words, any tree line in G' must be hard. 

For example, among the graphs of Fig. 4 the only surviving G' graphs 
are those shown in Fig. 6. 

By using Lemma 1, we may integrate safely soft-line subgraphs, the 
remaining hard links being easily taken into account by the fact that they 
represent an integrable factor. It follows that any G' is unitbrmly bounded 
in A, and hence G is uniformly bounded in A, proving the proposition. 

Remark. Although the splitting of Fig. 5 leads to a proliferation of 
terms, i.e., a single graph G proliferates into 2 I~1 new terms G', it can be 
shown that, by using the 0-symmetry, it is possible to rewrite a CN..i of (2.2) 
as one single term 

2 r t  2 ~  

IAI ,1 .i ' . . i  ~;  

where 

~cosh(flV~j)-I if (i, j )  is a tree line 
B(i = [ e - m ~ , _  1 otherwise 

Graphically, this means that in each graph G we can replace e - / " G -  1 by 
cosh(flVii)-1 whenever (i, j )  is a tree-line without affecting the value 
C u �9 e.g., see Fig. 7. Actually this symmetry seems to have an even greater N . , I '  

C 0 "2_ ) ) / 

. . - - - - -  , . .  . - -  . 

" i 

) ) 

D . /  " �9 
�9 . . . . . . . .  . .  . ,  . . . . . . . .  . 

�9 
Fig. 6. 

�9 4) 

) e t c .  
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~ due to 0-symmetry ~ .  ( ~  

replaced by 

Fig. 7. 

range of applicability. For example, the second graph 2 in Fig. 3, already 
controlled in the thermodynamic limit by Lemma 1 alone, has its bound 
improved by noting that vertices 1 and 4 cannot have three soft links 
(at least one must be hard). 

3. T H E  S Y M M E T R I E S  A N D  THE A N A L Y T I C I T Y  P R O B L E M  

As we have seen in the previous section, by just considering the 0-sym- 
metry present in the dipole gas potential, we were able to show that the 
series coefficients remain finite in the thermodynamic limit. We point out 
again that this symmetry (together with a multiscale formalism) has been 
the mechanism used to prove also the existence of the formal Mayer series 
of the Coulomb gas above 8n. c5" ~o~ We believe, however, that using only 
the "0-symmetry" we will not be able to show the analyticity of the dipole 
gas pressure: in this section we present some arguments which lead us to 
this conjecture. 

To make explicit the extent of each symmetry, we compare Mayer 
graphs of two different potentials: the dipole gas potential (1.3) and 
another one with a similar decay (1Ix 2 as x ~ ~) ,  but containing only the 
"0-symmetry." We take W~7 ~ =agog/vc.. ~ _,~ , ~=  1, 2, with 

V~'~= V(xi-.xs. ,O~,O/) as in (1.3) (3.1) t.'/" . 

and 

1 
VC.~ ~ - (3.2) 

~' 1 + Ix~-  x/[ "- 

where ai, o)= _+ 1 as already defined; xi,  x / c A ;  0i, 0j~ [0, re]. Remark that 
any technique using only the 0-symmetry means taking into account [V~[ 
(instead of/,,c J~) when bounding the integrals related to the Mayer graphs. 
The effect of the modulus is to turn off the angular symmetries of the dipole 
potential (apart from the 0-symmetry). Thus, actually, we should compare 
V ~ with ]V~I[. However, we take V ~2) above for the sake of simplicity: it 
leads to simpler calculations (details below) and essentially behaves as 
[V~)[. More precisely, Lemma 3 below clearly remains true for IVY J)[ 
replacing V ~2~. 
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\'\'~ 
v 

1 2 3 . . .  N 

Fig. 8. 

As described in the previous section, due to the sum over charges ai 
(i.e., the "0-symmetry'), we expect Mayer series with finite coefficients for 
both potentials. In order to show analyticity of the pressure we must bound 
by C ~v the Mayer coefficients, which are given by a sum of several positive 
and negative graphs. The control of these signs, related to the potential 
stability, will not be carried out here. We will only examine the behavior 
of certain graphs with N to show that for the dipole potential W~j ~' (with 
the full symmetry) they are bounded above by C N, whereas for the sim- 
plified potential W ~2' these graphs have N! C N as a lower bound. '0" 

Our claim is stated in the following lemma (whose proof essentially 
works also for Lemma 1; comments below). 

I . e m m a  2. Let G be the loop graph of Fig. 8 with N lines and N 
vertices, and let A be the ball of radius R centered at the origin (then 
IZ'l = ~R2). Then we have for 

N~ ' - -  lim d~, .- ,  d~N 1-I V(~ , e =  1,2 
t i . j l ~ G  

with V '~, V ~2' as defined above, that: 

1. I ~ ' 1  ~ c N. 
2. I~ '1  >t N! C N. 

Proof. Part 2: We note that v~Z)(x)= 1/(1 + x  2) is in L2(R2), and its 
Fourier transform ~.,Z~(p) is asymptotically given b f  6~ 

l 
pl2,(p) ~ -2-~ In Ipl, small Ipl 

/ 1 \ t / 2  
~"2'(p)~(~--s--7, ,} e x p ( - l p l ) ,  large [p[ 

\Ozr lPl/  

(3.3) 
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It is easy to check that [ ~-(21(p)]N is also in L2(R2). From the Parseval 
theorem for the Fourier transform we have 

I [  ~,(2)(p)]Z eO,.., . dp = I V~ V('-)(x- y) dy 

and iterating it, we have 

V (2) * V (2) * . . .  * V (2) (x )  = I [ ~ ,(2)(p)]  N eiP " x  dp 
M_ j 

N t imes 

(3.4) 

from which it follows that the convolution V(2)* V (2)*...* V (2) is in 
L2(R2). Using the dominated convergence theorem, aj~) is given explicitly 
by 

B 2) lim 2nU r dxl d x  N 
1 1 

N ~ -  " ' "  9 - ~ ' ' "  , , -~,  IAI o 1 + ( x t - x 2 ) -  I "~- (X2--X3)- 

1 1 
X 

1 + ( X N _  I --XN)2 (1 " ~ - ( X N - - X I )  2 

= V (2)* V (- ')*..-* V (2)(0) (3.5) 

N times 

and thus we have, for x = 0 ,  fg lv )<  m. Note that with (3.4) we also prove 
Lemma 1. And from (3.3) above 

, z  2n 

f#~)=~,, pdp~,, dq~[V(2)(pcos~o, psinq~)] 'v 

I 
>~C~V fo dp p Ilnp[N>~cNN[ (3.6) 

proving part 2. 
Part 1 follows in a similar manner using 

V")(O,, Oj, x , -  xj) = I dp (di "P)~ di 'p)  e-e"eip"'-"P (3.7) 
p- 

where d; ,dj  are unit vectors describing the dipoles at xi and .yj 
(di.el =cos  0~) and noting that ~-(~)= [(d~.p)(dj.p)/p2] exp( -p2)  is 
bounded in every neighborhood of p = 0. Remark that this bound is an 
effect of the ~-symmetry. 
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We stress once more that W ~z~ is "morally" W ~ with the 0-symmetry 
only, i.e., W t~ with the other angular symmetries turned off; moreover, the 
comparison between the dipole potential W I~ and the potential W c2~ 
makes sense only in two dimensions. The expression (3.2) describes a 
potential with the 0-symmetry and with the same decay of the dipole gas 
only for d = 2. In one dimension, for example, the analogous dipole gas (3) 
would be a Gaussian (i.e., a smooth function exponentially decaying at 
large distances) which is the smooth UV cutoff version of the delta func- 
tion, the one-dimensional dipole potential. This potential has a poorer 
symmetry (compared with the two-dimensional case), but it is obviously 
absolutely integrable and so the Mayer series trivially converges. 

4. FINAL C O M M E N T S  

Another argument for the necessity of using more than the 0-symmetry 
to prove the analyticity of the pressure appears when we turn to the well- 
known proof based on renormalization group techniques. 

With the sine-Gordon transformation mapping the statistical system 
on a field theory problem, the dipole partition function becomes 

where, roughly, P(dck) is a measure on ~b with inverse Laplacian as 
covariance (see ref. 1 or ref. 5 for details). Due to the 0-symmetry we have 
q (0+z t )=  -q(O), and so 

That is, the 0-symmetry is responsible for the even-function cosine in the 
field potential. It is important, but not the main point: in ref. 7, for example, 
cos(0~b) and (8~b) 4 are treated at the same time as a class of functions leading 
to the same infrared behavior. The crucial fact in the field theory problem 
is that the action is given by a Laplacian plus a perturbation depending 
only on 0~b [which is related to an interaction such 0i0//0 2 as in (1.1)]. 
Dependence only on 8~b is due to the full symmetry and leads to a renor- 
malization group with only marginal and irrelevant terms. 
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